USMILE PIs Veronika Eyring, Markus Reichstein, and Gustau Camps-Valls on the List of Highly Cited Researchers 2021

Three of the USMILE PIs are on the Global Highly Cited Researchers list compiled annually by Clarivate Analytics. The annual list identifies some 6,600 researchers who demonstrated significant influence in their fields through the publication of multiple highly cited papers during the last decade. The Highly Cited Researchers’ names are drawn from the publications that rank in the top 1% by citations for field and publication year in the Web of Science citation index. The list identifies the research institutions and countries where they are based.

USMILE PhD student Manuel Schlund wins award for first USMILE publication

For his paper on “Constraining Uncertainty in Projected Gross Primary Production With Machine Learning”, Manuel Schlund, USMILE PhD student at DLR supervised by Veronika Eyring, is awarded the “Klima-Preis” of the Reinhard-Süring-Foundation. The recently published study is the first publication of the USMILE project and is co-authored by all USMILE PIs. The award is intended to recognize scientists for outstanding work in the field of climate research. This year’s focus is on the “Detection of climate change with observational data” and the “Projection of climate change in the 21st century”.

Manuel Schlund - Klima-Preis

USMILE PostDoc Fernando Iglesias-Suarez accepted for ELLIS PostDoc Program

Fernando Iglesias-Suarez, USMILE PostDoc at DLR supervised by Veronika Eyring and co-supervised by Gustau Camps-Valls from the University of Valencia, has been accepted for the ELLIS PostDoc Program ( The ELLIS Phd & PostDoc program supports excellent PhDs & PostDocs across Europe by giving them access to leading researchers through boot camps, summer schools and workshops of the ELLIS programs.

Dr. Fernando Iglesias-Suarez © DLR

European Research Council (ERC) Synergy Grant “Understanding and Modelling the Earth System with Machine Learning (USMILE)”

  • The renowned and prestigious ‘Synergy Grant’ from the European Research Council will support the work of an interdisciplinary team to combine machine learning with physical models of the atmosphere and land surface.
  • The goal is to improve climate models and the analysis and interpretation of Earth system data.
  • Focus: Climate research, atmospheric research, artificial intelligence
Prestigious European Research Council grant will support the interdisciplinary team’s work to improve climate models and the way in which Earth system data are analysed and interpreted by combining machine learning with physical models of the atmosphere and land.Oberpfaffenhofen, DE / Jena, DE / Valencia, Spain / New York, USA – 11 October 2019. An interdisciplinary team of four researchers from the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR), the Max Planck Institute for Biogeochemistry, the University of Valencia, and Columbia University has been awarded a 2019 European Research Council (ERC) Synergy Grant to understand and model the Earth system with machine learning, one of the important approaches of artificial intelligence (AI). The prestigious award – 10 million euro over six years – will support the team’s ground-breaking work in rethinking the development and evaluation of Earth system models, which are the basis for understanding and projecting climate change.Veronika Eyring, head of the Earth System Model Evaluation and Analysis department at DLR’s Institute of Atmospheric Physics, Professor of Climate Modelling at the University of Bremen, and corresponding Principal Investigator (cPI) says: “We teamed up to join forces and combine our multidisciplinary expertise in climate modelling, terrestrial ecosystems, machine learning, and cloud parameterisations to address some of the main limitations in the simulation and analysis of climate change. This will allow us to better understand processes and to discover unknown causes and drivers in the Earth system.”The motivation for the newly funded ERC project ‘Understanding and Modelling the Earth System with Machine Learning’ (USMILE) is that there are still some fundamental limitations in understanding the Earth system, which also limits our ability to accurately simulate climate change. While Earth system models have improved significantly in the past decades, the models’ ability to simulate both global and regional Earth system responses, which are key for assessing climate change and its effects on the planet’s ecosystems and populations, is limited by the representation of physical and biological small-scale processes, such as clouds, stomata, and microbes.”Our central hypothesis is that this lack of understanding can be solved using machine learning. Firstly, we now have a massive amount of Earth observation data, with unprecedented spatial and temporal coverage for many processes. Secondly, high-resolution cloud-resolving models are now available that explicitly resolve small-scale processes such as clouds. But those simulations are computationally very expensive and can therefore only be run for a short time,” says Pierre Gentine, co-PI of the project from Columbia University’s School of Engineering and Applied Science. “And thirdly, the field of machine learning has quickly evolved, enabling breakthroughs in the detection and analysis of complex relationships and patterns in large multivariate datasets. We can now not only fit and model complex functions but also learn causal relations,” adds Gustau Camps-Valls, co-PI of the project from the University of Valencia.The team will develop machine learning algorithms to enhance Earth observation datasets accounting for spatio-temporal covariations, as well as developing machine-learning-based parameterisations and sub-models for clouds and land-surface processes that have hindered progress in climate modelling for decades. In addition, they will detect and understand modes of climate variability and multivariate extremes, and uncover dynamic aspects of the Earth system with novel deep learning and causal discovery techniques.Traditionally, physical modelling and machine learning have often been treated as two different worlds with opposite scientific paradigms: theory-driven versus data-driven. “Even though it has extraordinary potential, machine learning has not yet been widely adopted to address the urgent need for improved understanding and modelling of the Earth system. We hope that, by bridging physics and machine learning, we will be able to revolutionise Earth system modelling and analysis, leading to more robust climate projections on the long-term,” says Markus Reichstein, co-PI from the Max Planck Institute for Biogeochemistry. He adds: “USMILE can drive a paradigm shift in the current modelling of the Earth system towards a new data-driven, physics-aware science.”ERC Synergy Grants are awarded to groups of two to four co-PIs who have complementary skills, knowledge and resources, and can jointly address research problems that could lead to breakthroughs not possible by the individual PIs working alone. The four PIs on the USMILE project all work at the intersection of Earth system and data science with complementary expertise. “We are excited to work together on this interdisciplinary team and thank the ERC for giving us this great opportunity,” says Prof. Veronika Eyring.Set up by the European Union in 2007, the European Research Council is the premier European funding organisation for excellent frontier research. Every year it selects and funds the very best, creative researchers of any nationality and age to run projects based in Europe. In most cases, ERC Synergy groups are interdisciplinary, often using multidisciplinary approaches, and meet regularly over the course of the project.

USMILE host institutions:

German Aerospace Center. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR) is the national aeronautics and space research centre of the Federal Republic of Germany. Its extensive research and development work in aeronautics, space, energy, transport, security, and digitalisation is integrated into national and international cooperative ventures. DLR is also responsible for the planning and implementation of Germany’s space activities on behalf of the federal government. DLR is also the umbrella organisation for one of Germany’s largest project management agencies.

Max Planck Institute for Biogeochemistry. The Max Planck Institute for Biogeochemistry, Jena, is part of the German Max Planck Society. Its mission is to investigate biogeochemical cycles (carbon, water, nutrients) from local to global scales with approaches including manipulation experiments, long-term observations and data- and theory-driven modelling approaches.

University of Valencia. The University of Valencia is a research and educational institution more than 500 years old, and one of the top universities for physics in Spain. The Image Processing Lab (IPL) is a multidisciplinary institute that gathers more than 60 faculty and researchers in Earth observation, image processing, vision science and machine learning. The lab has active collaborations with ESA, NASA and EUMETSAT for designing new sensor devices, measurement campaigns, and data-intensive processing chains. The IPL faculty educates the new generation of physicists, data scientists, remote sensing analysts, mathematicians and electrical engineers in various (under)graduate, master and doctoral programmes.

Columbia University’s School of Engineering and Applied Science. Columbia Engineering, based in New York City, is one of the top engineering schools in the U.S. and one of the oldest in the nation. Also known as The Fu Foundation School of Engineering and Applied Science, the School expands knowledge and advances technology through the pioneering research of its more than 220 faculty, while educating undergraduate and graduate students in a collaborative environment to become leaders informed by a firm foundation in engineering. The School’s faculty are at the centre of the University’s cross-disciplinary research, contributing to the Data Science Institute, Earth Institute, Zuckerman Mind Brain Behavior Institute, Precision Medicine Initiative, and the Columbia Nano Initiative. Guided by its strategic vision, ‘Columbia Engineering for Humanity’, the School aims to translate ideas into innovations that foster a sustainable, healthy, secure, connected, and creative humanity.

USMILE Press Releases by the four Institutions: